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A6STRACi

the effects of varying degrees of correlation between
abilities and of various correlation configurations between
item parameters on ability and item' parameter estimation

using the three-parameter logistic model was examined. Ten

two-trait and one unidimensionai test configurations for

thirty item tests were simulated for 6000 simuiees. Each

configuration cc sists of a specific item parameter
contiouration and a specific correlation between traits on

two dimensions. Six conditions were simulated for each

configuration, ranging from a very easy to a very hard

test. The accuracy of item and ability parameter
estimation was examined using correlations; KR-20

coetficients and factor analyses were also performed. The

factor analyses- supported a division of the simulated

multidimensional data sets into groups according to how the

discrimination parameter "loads" on the two dimensions. the

tests either both load heavily on both dimensions, (both

tests are multidimensional) , one tests loads heavily on one

dimension and the other loads heavily on the same dimension

(both tests are unidimensional), one test is unidimensional

and one is multidimensional, or one test loads heavily on

one dimension and the other test loads heavily on the other

dimension. lhe results indicate that tne poorest item

parameter estimations occur for the situation in wnich one

test is. unidimens-sional and one is multidimensional.



Parameter Estimation

EXAMINING THE EFFECTS OF MULTIDIMENSIONAL DATA ON

ABILITY AND ITEM PARAMETER ESTIMATION USING

THE THREE-PARAMETER LOGISTIC MODEL

INTRODUCTION

Several multidimensional models have been propOsed and''

some research has been conducted using these models.

(Doody-Bogan.& Yen, 1983; Hattie, 1982; McKinley, 1983;

McKinley & Reckase, 1982, 1983a, 1983b, 1984A Reckase,

1979; Reckase & McKinley, 1982). However, . use of these

models has not yet proven feasible..

Most of the item response theory (IR[) methodology.

that has been developed is applicable only to the limited

case of one-dimensional data, in which case the assumption

of unidimensionelity 'is required in order to estimate the

item and ability parameters. Unfortunate/y, since in most

practical applications that assumption is not realistic,

and useful multidimensional estimation procedures are not

yet available, practitioners must either fall back on

traditional methodology or inappropriately apply IRT

methodology while hoping for 'robustness to violation of the

unidimensionality assumption. Such robustness remains

undemonstrated.

Violation of the unidimensionality assumption has been

suggested as a problem in estimation of item parameters

(Loyd & Hoover,' 1980; Cook & Eignor, 1981). It is

informative to 'examine the effect of violation of the

unidimensionality assumption on the estimation of the item

parameters. a, b, and c. and on the estimation of ability,
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b. This effect can then be considered when parameters are

estimated in situations in which multidimensionality is

known or suspected and no usable estimation procedure for

multidimensional data can be found.

Test Analysis Model

the statistical model tc be used in this study for

analyzing item responses is the three - parameter logistic

model. This model assumes that an individual's performance

on a test is influenced by only one important unobservable

characteristic, e, which is called a (latent) trait or

ability. The three-parameter logistic model assumes that

the probability of a correct response to item i by person j

with ability level, 0, is:,

1 Ci

Pa (0..i) =I CI + (1)
1 exp ( -1. 7a, (93-12, ) )

where at, bi, and ca are the discriminating power,

difficulty, and lower asymptote or guessing parameter of

item i, respectively.

the accuracy of item parameter estimation is affected

by several things, including the accuracy of the estimation

program (McKinley & Reckase, 1980), the size of the

calibration sample (Hambleton, Swaminathan, Cook, Eignor, .

Gifford, 1978; Reckase, 1977), and the percent of test

variance accounted for by the first factor found when the

data are factor analysed (Reckase, 1979). ViOlation of the

unidimensionality assumption has been sugaest'd as a

oroblem in estimation of item parameters (Loyd & Hoover,

1990; Cook & Eignor, 19(31),

5

la



. Parameter Estimation
5

Objectives

The purpose of this research is to investigate the

robustness of item and ability parameter estimation using

the three-parameter logistic model to violation of the

unidimensionality assumption, and to examine the effects of

specific multidimensional data configurations on parameter

estimation using the three-parameter logistic model.

Educational or Scientific Im ortance of the Stud

Most commonly used IRT models assume unidimensionality.

However, this assumption is not strictly satisfied by item

pools in mast practical situations (Lord, 1968). ,While the

assumption of unidimensionality is'acceptable in the case

of aptitude tests, that assumption is unrealistic for many

tests, including most achievement tests (McKinley &

Reckase, 1982; Reckase, 1979, 1981; Sympson, 1978). Any

factor that influences an examinee's score on a test, other

than the one latent trait. (ability) assumed for the

one-dimensional model, will violate the assumption of

unidimensionality. Guessing, speededness, fatigue,

cheating, random answering, or accident!} overlooking or

skipping an item are possible factors. The existence of

two or more cognitive traits is one such possible factor.

An achievement test in mathematics might require both
reading skill and mathematical reasoning. An achievement

test in science might require both reading and knowledge of

science facts. If so, the assumption of unidimensioality

does not appear to be met. Nevertheless, IRT methodology
has well-known advantages over traditional methodology and

is applied in situations where it may not be appropriate.

Hence: it is informative to determine the effects of

multidimensionality on parameter estimation. It is equally

Important to develop guidelines for educators and

researchers concerned with achievement testing, who wish to

benetit from the advantages o+ iki methodology.

BEST COPY
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ihe simulations begin with the generation of

two-dimensional data sets from a multidimensional model

using prespecified parameters througn an investigation into

the effects on parameter estimation of various

multidimensional conditions, and end with a re-examination

of 'the accuracy of the parameter estimation . through

crass- validation.

Data Generation

The main question to be examihed in this research is

how robust parameter estimation /based on the

three-parameter logistic model is to violation of the

unidimensionality assumption underlying the estimation. The

.unidimensionality assumption is violated whenever the

scores that are being equated are muttidimensional .in the

sense that an examinee's score on a.test is the result of

more than one latent trait. The data can be the result of

more than one latent trait and can also vary in the degree

of correlation that exists between these traits. Since

infinitely many multidimensional data sets fulfilling these

requirements are possible, this research project is

necessarily limited to a few of the possibilities.

Number of dimensions and degrees of correlation. ine

two-dimensional case was chosen for this research as

typical of published tests and as a starting point in

examining the robustness of parameter estimation to

violation of the unidimensionality assumption. Examining

all possibilities is beyond the scope of this research.

(he choice of correlations was limited to that which

seemed possible for a published test, the Comprehensive

Tests of easic/Skills, Forms U and V (CTBS/U, Crbbiv;

LTB/McGraw-Hill, 19 81). A correlation of zero we. chosen

7
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to simulate data sets on which Trait 1 and F 4. 2 have no

correlation. Correlations of .3 and ., zhosen to

simulate data sets on which Trait 1 and Trait 2 have low

correlation, correlations of .5, .6-, and .75 were used to

simulate two traits that are, more highly correlated, and .9

was used to simulate two traits that are highly correlated.

One unidimensional data set, which is representative 04, a

situation in which the correlation between traits is 1.0

was also generated to be used as a criterion against which

the analyses of the multidimensional data sets could be .

compared.

Multivariate model. Two-dimensional data sets were

generated using the multidimensional model described by

Doody-Bogan and Yen (1983). This model is an extension of

the three-parameter logistic latent-trait model. The

multivariate logistic mode/. is:

Pa (14.3 ) = C, +
(1 - ct)

1 + exp(-1.7ate(Coje
tel

(2)

where Pt(u.") = Pt(Oja,Ojw,...,0jm), the probability of a

correct response to item i by a person j whose location in

an m-dimensional latent space is described by abilities

t4i1. QJW,s.s,Jws; 0.1t represents the ability of person on

trait t, ate is the discrimination o+ item i with respect

to latent trait t, ble is the difficulty of item i with

respect to latent trait t, and C, is the guessing parameter

for item i. Note that when m = 1, this model reduces to the

univariate logistic three-parameter model of Birnbaum

(1968). !he model was used with m = 1 to simulate the

unidimensional data. Thirty item tests were used.
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Item parameter values and item 13001. Discrimination,
difficulty, and guessing values were chosen as in Doody-
3ogan and Yen (1983). The base'pool consists of 30 items.

Since the existence of two traits is assumed, two discrima-
.nation parameters, two difficulty parameters, and one
guessing parameter per item are required. Iwo test levels

were simulated, a harder test (Test 2) and an easier test
(Test 1). Item parameters. for the harder test were estima-
ted using simulees with higher ability levels than those
usmd to estimate item parameters for the easier test.

Six data sets were simulated per data configuration,
AV.

ranging from a verVasy test to a very hard test. For
different levels of difficulty, 1.0 was added to the base
bi values to simulate the hardest test and 1.0 was
subtracted from the base bi values to simulate the easiest
test. Similarly, .5 was subtracted from and added to the
base values to simulate slightly different levels of

difficulty. These differences in difficulty are represented
as b2 bi = 0.0. 1.0, and 2.0, where b2 is the rean
difficulty of the harder test (Test 2) and bl is the mean
diffizulty of the easier test (test 1)..

For each test configuration, item parameters aal, 01,11

aj2, bi2, and c, were randomly assigned to Traits 1 and 2
for both lests 1 and 2, with the restriction that the
desired correlations between parameters were approximated
as closely as possible. Randomizations were tried until
the desired correlations were obtained.

Test configurations. Ten two-trait data test
configurations were chosen to be simulated. Each was
chosen as being typical of a possible achievement test.
Table 1 shows the desired trait and item parameter
correlations -far the simulated data sets. Table 2 snows
cossible tests where such correlations mint exist. Table
shows item parameters used tor each data cantiouratior,.

9
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Table 1

Correlations for Simulated Data Sets

Configuration,

1

Lower Level Upper Level

Trait 1 Trait 2 Trait 1 Trait 2

r(01,02) 2 0 same as

r(atibt) = 0 ria202) 2 0 lower

r(a11a21 2 0 r(b11b2) 2 0 level

2 r(01,02) 2 .3 1101,021 = .3

r(atobi) 2 -.3 r(a2,b2) = 0 Oallbs) a -.3 r(a21b2) a 0

r(atia21 2 0 r(btlb2) = 0 Hato& = .2 r(111,112) = 0

3 r101,02) = .4 same as

r(alobs) 2 .2 r(a21b2) = .5 lower

rta1la21 = 0 rib$11,21 = 0 level

4 r(01,02) = .5. r(01102)
2

.5

r(atIbt) :.4 r(a2021 = 0 Hatibt) = .4 rtawiba) 2 .7

f(hiaa) s 0 011142) = 0 r(a102) = 0 r(b102) = .5

5 r(01,021 = .5 same as

r(alibt) = 0 r(a2,132) = 0 lower

r(a1li2) = -.8 r(11,02) = 0 level

6 1(01,02) 2 .5 same as

r(atibt) = r(a21b2) = 0 lower

r(a1la2) = -.5 r(b1,1121 = 0 level

7 r(01,021 2 .6 same as

riallbt) = 0 r(a21b2) 2 0 lower

Hatla2) 2 0 r(bl,b2) 2 0 level

8 r(01,82) = .75 same as

r(al,b1) .4 r(a202) = 0 lower

r(at,a2) 2 0 ribt,b2) = 0 level

(table continues!
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Table 1 (continued)
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Configuration,

9

Lower Level

Trait 1 Trait 2

r(6s102)
= !9

r(allbs) = 0 r(:.21112) = 0

r(assa2) = 0 r(bilb2) = 0

10 r(01,02) = .9

r(atibs) = 0 r(a21b2) = 0

r(aila2) = .8 r(bilb2) = .8

U unidiuensional

Trait I

Upper Level

Trait 2

same as

lower

level

sloe as

lowei

level

unidicensional

Note: All item parameters are written without the item subscript, i.
All ability parameters are written without the person subscript, J.

Table 2

Applications to Real Data

Test Name

Test 1 Test 2

Trait 1 Trait 2 Trait 1 Trait 2

IIIa.m=116

1. Language Mechanics en
pundctuation

middle
punctuation

end
punctuation

middle
punctuation

2. Matheoatics Computation other items deciaals other items decimals

3. Mathesatics Concepts
and Applications other items

fractions &
conversions other items

fractions &
conversions

4. Mathematics Computation other items fractions other items fractions

5. Social Studies reading yaphs reading graphs

6. Mathematics Computation other items decimals other items deciaals

7. Science reading science facts reading science facts

B. Mathematics Concepts
and Applications oathesatics reading sathesatics reading

9. Language Mechanics reading punctuation reading punctuation

V!. Reading Conprehension reading vocabulary reading vocabulary

4 not caas..!rea at alis 1E44i.
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Table 3

Base Item Parameters

Easy Test Hard Test

Configuration AL1 AL2 BL1 EIL2 Cl. AH1 AH2 BH1 8H2 CH

QM .68 -1.25 MB 0.90 1.00 0.62 -2.00 0.16
z.00 0.8 .1Q 1.52 0.20 0.90 1.00 :Q.03 044 0,;18
1.08

- : f 1:i8
0. is

2. 0 .0i '8 1:18 tii -8: ii SS.

010 0. .16 0.1 1.8Q 1.02' 0.10 0.19
1. 0 1. A 8: i -8:q 4.20 1.0 2.0o 0.9z -1.23 0.20

11 1.0
0.1e 0.0

. 6 0.62 0.16 -0. 0?:10 08 In 0.1".11

IA iq 1 1 8. i2 8:IS
1.10 0.90
0.60 1.10 -8:10

-0.31 1:13
0.32 .2

kp
40 -2.00 -0.84 0.19

0./0 -0.45 -1,46 0.19 1:08 II -8:ii -8: ii 8:ii
0. 0 A.60 0.50 1.00 0..49 -0.21 0.21
1. 0 .10I -0.59 Ili S..1! 0.70 0.70 0.68 0.40 0.16
1.90 1.10 -0.52 1.00 1.00 -1.46 1.02 Q.1
.80 .10 -1.5 -0.59 8.170 0.80 1.60 -Q.59 -1.04 0.1
.90 1.0 -0. 4 -1.04 0.20 1.20 0.80 -0.52 -1.46 Q.'
.70 o 80 1. 2 1.35 0.20 1.60 0.90 0.53 -0.17 0,2

0.70 -0,10 1.02 0.16 0.90 0.80 -Q.17 0.1
1.10 .60 -0.38 0.26 0.16

-0.24

1.80 0.04 -0.0 0.17
(..).0 .40 -1.04 0.21 0.70 1. 0 -1.04 0.6 0.16
1.60 0.90 0.95 0.21 1.30 0. 0 -1.25 -0.45 0.18
1.0 .10 -1.46 0.93 0.20 0.80 0.9 -0.24 0.9; 0.it
1.00 1.30 1.02 0.53 0.22 .20 1.20 0.18 1. 0
0.90 0.90 0.53 0:21
1.30 1.60 1.35

-0.66
8:3i -8.66II:918 HS '74 -8:ii 0.1a

1.40 0.90 0.01 -0. 0 0.16 0.8Q 0.60 -0.38 -169 3.i0
0.80 1.00 -0.03 0.04, 0,17
1.00 0.70

3.i' lii
0.1z

.10 0.70 0.1
1.40 1.3Q 0.40 1.52 0.21

1.10 1.00 . 4 0.0 1.20 1.10 1.52 0.au 0.22

2 0.80 0.00 1.02 -0.03 0.17 0.80
010 -01:1i -01:ii 8:220.80 0.00 4 0.16

8 -..N :8:i/ 1
1.60 1. 0

0.161.10 0.-0 0. 1 0.70 0.00
-1,C2i -1.25 0.161.00 0. Q .68 0.3 0.20 0.90 2.00

1.20 0.00 0.11 -0.84 0.17 0.70 0.00 0.95 -0.45 0.20
1.80 0.00 -1.04 0.19 1.40 1.40 0.32 0.32 0.16
1.40 0.00 -0.1777 -0.66 0.22 A 0 0.4 0.18 0.18
0.7Q 0.00 0.32* 0.49 0.16 1.10 0.00 1.5, -0.84 0.20
1.60 QM 0.18 0.11 0.20 1.80 0.00
1.00 0.00 -0.84 -1.46 0.20 1.00 0.00 .20
1.10 0.00 -0.10 0.04 Q.16 140 0.00

ill -1.4 .21:i910.80 0.00 0.49 -2.00 0.20 1.20 0.00
0.80 0.00 -0.38 -Q.45 0.20
.00 0.00 -1.25 0.74 0.22. ki8 0.00 -00:i! =8:(1)13 3:28

1.00 040 0.53 -0.38 0.18'
.10 0.o0 0.75 0.95 0.16 I:i3 0.00 IV IP 85

0.50 0.00 0.04 -0.31 0.16
0.90 0.00 0.62 0.62 0.20 0 0 201:0 MS 3:03 -4:ii 06."
1.20 0.00 -Q.31 -1.25 0.20 010

0.08 M? 1:41
0.18

0.60 0.00 0.26 0.18 0.19 . 0 1.80 0.21
2.00 0.00 -0.66 0.53 0.18 1.30 1.30 -0.10 -0.10 0.15
1.10 0.00 -1.04 1.02 0.21 0.80 0.00 -0.52 0.04 0.17
0.90 0.00 1.35 -0.10 0.18 0.80 0.00 0.25 -0.38 0.16
0.70 0.00 -0.03 1.35 0.20 , 1.10 0.00 -0.59 0.11 0.20
0.90 0.00 -1.46 0.40 0.17 140 0.00

c.70

0.18 0.74 0.2A
1.20 0.00 1.52 0.26 0.16 0.00 0.14
0.60 0.00 -0.45 0.68 0.22 0.80 0.00 0.53 0.95 0.17
1.30 0.00 -0.52 -0.52 0.1? .00 0.00 -0. et -0.66 0.16
1.00 0.00 -0.24 1.52 0.16 v.60 0.00 -0.04 0.68 (O.''1
0, SO 0.00 0.74 -0.17 0.21 0.50 0.00 0./4 -0.24 v.2.2

(table continues:
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Table 3 'continued)

Easy Test

Configuration ALI AL2 8L1 6L2 CL

HS ?I 8..t! 1 8:13
3

1:100 0.00 -8:61i 118 0.19
0.17

0. 0 0,00 26 0.62 0,16

ka 8: 10) -8:84 8:11 SA
111 if 46 -1,1'

.48
1.3

00.70

-2.00 -0.24 0.20

0. 0. 0
0 0. Q -0.45 :1.25 0.20

1.2 -82.Y7 -3..g 8:1622

81 Ni
-0.52 .3 0.17
-1.04 . 0.20

ki8 2 i6 -di I. 1 °.

1.1 0.00 0 0.20

-0.20

0.90 0.00
0.60 0.00

.:Q0 -0.10 Q.16

*11
Q.I6

1.00 0.00 0.0, (-1. 8:21
1.60 1.20 -1.46 7- .45 ' 2Q
1.00 0.00 1.35 -0. .22Q

0.90 0.00 0.49 -0.: 0.21
1,30 2.00 1.02 1.5. 21
1.80 .40 0.95 0.40 .16
6.70 0.00 -0.03 0.74 0.18
1.00 0.00 0.32 -0.38 0.17
0.80 0.00 0.74 -0.59 0.19

4 0.50
0.90
0.60
1.70
0.70
0.80

8:18
1.20
0.90
0,90
0.60
0.90
1.00
1.00
1.00
1.00
1.10
1.10
1.00
1.10
1.10
0.80
.20

1.20
1.30
1.40
1.60
1.S0

0,00

04
0,00

0
0.00.00

0.00
0.00

000.400

0.

000.00

0.00
0.09
0.00
0.00
0.00

0.00
Q.00

0.00
0,00
0,00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

- 2.00 -0.38 Q.la
-0.24 -0.66 0.20
0.40 .20
- 0,59 -0. 1 .20
- 1.46 1. 5 .21

- 1,04 -0.52 0.19
0.53 -0.84 0.20
-0.84 -0.45 0.17
-0.17 -0.03 0.22
- 1.25 0.32 0.16
0.68 0.04 0.20
-0,31 -0.24 0.16
0.26 -0.5i 0.19
-0.52 -1.25 0.21
0.62 0.11 0.22
0.95 0.26 0.18
1.52 0.62 0.17

- 0.03 0.53 0.16
-0.45 0.49 0.16
0.49 0.68 0.17

-0.66 0.40 0.16
0.11 -1.46 0.20
0.74 -1.04 0.16
1,02 -2.00 0.21

-0.1J 0.95 0.22
00.04 1.52 0.18
.32 0.18 0.20

0.18 -0.17 0.16
-0,78 0.74 0.2
1.35 1.r:2 Q.13

Hard Test

AH1 AN2 8H1 BH2 CH

1 :18 -01
2.0Q 1.40 1.52 -0.45 0.16
1.40 1.00 1.35 -0.84 0.20
0.60 1.60 0.62 0.18
1.00 1.20 1.02 -1.04 0.22
i.80 0.40 0.16
1.00 .80 0 tl 0.18
1.10

.96 0:31 1.4 3i80.60 .1

1.10 0.70 -0.38
.04i 8:ii0.80 1.00

0.50 A
146 8:

0.74 0.2
1.00 0.7 9 0.53 0.16
1.20 1.00 -1,04 1.02 Q,1Z
1.00 0.80 -0.59 -1.25 0.19
1.20 0.50 -2.0Q -0.24 0.16
1.60 1.60 0.62 1.52 0.19
0.80 0.80 -0.66 -0.66 0.20
Q.90 0.90 -0.84 -0.03 0.18
.0.70 1.20 -1.46 -0.31 0.16
1.30 0.90 2 0.18 0.17
0.80 1.00 -0.52 0.17
0.70 2.00 0.18 0.62 0.22
0.90 1.20 -0.10 0,26 .1
1.10 0.80 -0.17 -0.59 0.16
1.20 0.60 -0,38 -1.46 0.20
1.10 0.60 0.11 -0.17 0.20
1.00 1.30

-8:101

1.35 0.22
0.90 1.10 0.68 0.20

0.90 0.00 -0,45 -0.10 0.21
0.90 0.00 -1.0 -2.00 0,16
1.10 0.00 -0.66 -1.25 0.17
0.60 0.00 -0.52 -0,17 0.22
0.70 0.00 0.04 -0.84 0.22
1.00 0.00 -0.24 -0.66 0.20

0'0.80 0.00 -0.31 -0.59 0.17
0.80 0.00 -1.46 -1.04 0.20
2.00 0,00 0.4Q -0.31 0.20
1.00 0.00 1.52 0.74 0.16
1.20 0.00 0.68 -0.45 0.22
1.10 0.00 0.18 -0.24 0.18
0.90 0.80 -0.84 1.02 0.16
1.30 0.00 -0.10 -0.52 0.16
1.40 0.00 0,74 0.04 0.20
0.80 0.1 -0.59 0.52 0.16
1.60 0.7 -0.17 0.95 0.17
1.20 0.0 1.02 0.18 0.16
0.70 0.00 -2.00 -1.46 0.18
1.10 0.00 0.11 0.32 0.20
1.00 0.00 0.3/ 0.40 0.18
0.60 0.00 -0.3 -0.03 0.20
0.60 0.00 0.53 0.11 0.20
0.90 OM 0.95 0.49 0.19
1.60 0.00 0.26 0.53 0,20
0.50 0.00 -1.25 -0.38 0.21

1.10 0,00 1,35 0.26 0.19
1.20 0.00 -0.03 0.68 0.16
1.00 1.00 0.49 1.52 0.19
1.00 0.90 0.62 1.35 0.21

13
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Easy'Test

Configuration All AL2 BL1 6L2 CL

5 0.00 1.10 -0.66 0.04 0.17

0.6 1.20 -0.45 -0.31 0.17
1.20 0.95 0.68 OM

0.7 0.00 -1.46 0.40 0.18
SA8 a 0.11 0.3 0.20

8: 8 I:4 II! 0.

1.0 0.16

i

-0.4 0.19

8: 8 il .8..lt Iii, 8:11

8: 8 -3:01 1 1 8..B
0.00 .0
1.90 0.0

0.ig 0.17
-1. 0.22

1:88 ki -8: i =8:11 0.i1O. 6
Q.00 4 -0.52 0.1 8: it

?.q .8 1:1? -Q.'

A 00
iilu .0 -1. 4 1:18

0.20
0.16

1.10
040 Q.8 3
1.20 0.0

..! 1.1 10
0.16
0.22

0.18

0.18

0.00 0.7 -1.2: - .24 0.16
1.20 8.0 1.5; -i.03 .16

?IS 81 -8:8i 1:4 8:i?

2:88 SAS
-0.38 -146 0.20
0.68 0:62 0.22

6
8:563 8:0 8.ii 0.45 8:21
0.60 0.60 -0.10 0.11 0.19
0.7 0.70 -0.59 0.32 0.20

0.? 0.00 -0.38 -0.03 0.161

0.7 0.70 Q.74 0.62 Q.19
0.8 0.00 0.53 -2.00 0.21
0.8 0.00 0.68 -1.46 0.17

0.80 0.00 0.62 1.33 0.16
1.00

0.00
-0.66 -0.84 0.16

0.90 0.00 0.9: -0.5? 0.20
0.90 0.00 1.02 0.40 0.18 0.80

8:B
3.0 0.49 -1.04 0.17
.00 0.40 -1.25 0.20 1.908

.1
0.00
0.00

-1.46
-0.31

. 1.00

-0.24

-0.66
1.02

0.20
0.22

.20 SA -0.17
0.95

0.16
Q.16

.10 3:88 -1.33 8:11 3.161

. 1Q 0.00 -0.45 -0.31 0.20

. 10 0.00 -0.03 0.49 0.18

.00 0.00 0.26 0.53 0.22

.20 0.00 1.52 0.04 0.22

.20 0.00 0.18 1.52 0.19

. 30 0.00 -0.84 0.18 0.21

.40 0.00 -1.04 -0.24 0.20
. 60 0.00 -1.25 -0.38 0.18
.80 0.00 0.11 -0.17 0.20

2.00 0.00 -0.52 -0.52 0.20

Hard Test

AH1 AH2 8H1 8H2

0.60 1.

1.20
30

0.6Q 0.00
0.70 0.00018 I
..89 8.08
.80 0.0

0 :08

I:18
0

0.00 1.0.10

0

1.51
0 1,10
1.400

0

0.0Q

1:88 US
1.10 010
1.10 O. 0

:90

0.00 0.70
1.30 0.00
0.00 0..80

1.60 050
Q.600.00

2.00 0.00

0.50
6

0.

0.0

0.720
0.10
0.80
0.80
0.99
0.80
0.90
0.90

same as Configuration 1

1.00

1.00
110

1.10
1.10
1.10
1.20
1.80
1.20
1.30
1,40
1.60
1.20
2.00

same

1.60
1.30
1.40
2,00

.0
01.80.00
00
0.00
0.00
040

0.00

8:88

8:88

8:88

8.008

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

CH

1:62 -8:0 00:1!

8:18 18
0.17
0.20

201 1:ii 8.H

044
-0.59

8:if

-811 :811 8.18

1.31 IA 8:I0

1:0 IN
8:

-8A 8:12 8:4

-8:il IPA
0.22
07

: .160

IT -i. t

8:ii

.1

1

1.01
- 0.52 8.40 10)..i2

Ili -A; S

.

. 2
i

Ali 314
O

0.20

-8:84 -8:84

1146

81i -MI
1.35

01
7

:

Ul 6:68

-8.ii 1.35

=8:g -S:ii

0.

-3:8i -1.28

8:1;

0.31

- 11
-13.25 0.04
-0.17 -2.00
-1.46 1.52
- 1.04

,

0.40

0.16
0.16
0.20

0.18

1

0.17
6

0.21
0.20
0.17
016

.16
1

0.20
0.16

0.22
0.18

Si1
0..19

00.218.Q
0.2.21 0

0

0.16
0.20
0.19
0.19
0.20

as Configuration 1

!taOle continues'

14
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Table 3 (continued)

Configuration ALI

8 80.0
1.10
180.

1.10
1.20

0201.0

1.

0.9.9
0.80
0.70

0.70
1.10

1.30
0.60

1.20
1.60
241
0.80

1.1g
0.80
0.60
0.50

0.90
1.00

1.00
0.90

9 same

10 0.50
0.60
0.40

70.0
0.70
0.80
0.80
0.80
0.80

0.900.

0.

90

0.90
0.90
1.00
1.00

1.00
1.00

..00
1.10
,.10
1.10
1.10
1.20
1.70
1.20
1.30
,.40
1. big

1.90

2.00

Easy Test

All BL1

'0.53

0.68
1.02
71.45

.95

.40
Q

1.4
0.26
1.35

-2.Q0
0.49

-1.46
-0.59
Q.74
0.62
0.18
0.04

-0.24
1.52

-0.52
-0.66
-044
-1.25
-0.17
0.11

-0.38
-0.31
-0.03
0.32

Configuration

-00
-1.04
0.95

-0.17
-0.66
-0.03

-0.84
-0.45
0.32
0.68
0.62
0.11
0.04
1.35
0.40

-0.59
0.74
-1.46
-0.31
-0.32
0.53
0.49

-0.38
-0.24
-1.25
1.02
0,13

BL2 CL

0.20
0.18
0.21
0.16
0.20
0.20
r7

p.18
0.16
0.17
0.20
0.17
0.21
0.20
0.20
0.18
0.16
0.16
0,20
0.19
0.22
0.19
0.22
0.19
0.21
0.22
0.16
0.20

1

0.21
0.16
0.16
0.16
0.19
0.20
0.20
0.21
0.21
0.22
0.20
0.20

0.17
0.4

10

0.19
0.20
0.22
0.18
0.18
0.16
0.20
0.18
0.20
0.22
0.1

. 42

0.80
0 .80

0.80
1.00
1.10
140

..9

0
20u

0

1

1..00

18

0.0
1.80
0..2080
1

0.90
1.00
1.60
1.20
0.90
1. 0

818
1.2Q
1.40
0.60
0.90
1.10
0.60
1.10

as

0.80
0.90
0.70
0.60
0.90
0.70
1.00
0,50
0.90
110

.1.10
0.60
1.00
0.90
0.80
1

0
. 10

1'0

1

1.,00

20

(Le
.00u
.20
.10
.00
.30
.60

.40
2.')')

1.50

0.41
0.18
0.53
0.2b
-1.25
-0.03
0.04
-1.46
1.52
1.35
0.40
0.11
0.32
0.68
1.02

-0.59
0.74

-0.17
-0.45
-0.31
-0.10
-1.04
-0.24
0.95

-0.6o
-2.00
-0.42
-0.J8
0.62

-0.84

1.35
-1.46
-1.04
1.02

-0.31
-0.38
0.26

-0.03
-0.59
-0.45
0.62

OA;
0.04
0.11
1.52

-0.10
0.40
-0.84
0.74
2.00

--0.17
0.53

-0.52
0.68

-1.25
-0.66

4. y`

0.19

/5

Hard Test

AHI AH2 8H1 BH2 CH

1.60
0.90

1.20
0.80
1.00
1.40
1.10
1.00
0.50

2

LP1.0

14
1.00 0

0. 90

0.70

0.90

i:B
21.0

1.10
0.7
0.800
0.80
1.10
0.80
00.60

.60

.00
0.7Q
1.10

0..3060 1.52 0.40
1 0.26 -0.66
140 0.62 0.74
0.60 -0.03
2.00 -0.66 1.3
0.90 142 0.9
0.90 -0.17 0.62
1.120 0.32 -0.10
1.0 -1.25 -2.00
0..8090 0.04 0.32
0 0.11 0.49
1 10 0.68 0.18
0..70 -0.45 0.68

00 -0.31 -0.59
11..20 1.35 0.11
0.50 0.74 -0.52

-0.84 -1.04
0.95 -1.46

1 10 0.40 0.26
1..80 0.18 -0.31
0 -0.24 -0.45
0..7080 -2.00 0.53
140
1.00
1,00
0.80

1
-0.10

,38

-0..53

09

142
0

-0..2433
-0.84

1.40
1.20

-1.4
-0.5,

-.17
-00, 03

0.00 -1.04 1.52

1.10 0.49 0.04

am

0.50
0.60
0.60
0.70
0.70

as

0.00
0.90
0.70
0.60
0.90

Configuration

-1.25 -2.00
0.49 0.11
0.04 0,49

-0.24
-0.52 -00.2.54

0.80 0.70 0,62 0.40
0.00 0.50 0.40 0.62
0.00 0.60

1.00
-1.46 -1.04

0.80 0.11 0.04
0.90
0.90

0.80
1.00

0.53
-1.04

-0,31
-0.17

0.90 1 0 -0.31 -1.25
0.90 1..210 -0.1/ 0.74
1.00 0.80 1.52 1.35

1.00 1.20 -0.45 -0.66
1.00 1 0.53
1.00 0.3Q.90 -0.38
001.10

1.

1.10
0.70

-0.38
-0.66

-0.03
-0.45

1.10 1..2040 0.26 -0.59
1.10 1 -0.59 0.26
1.10 1. 00 0.95 1.02
1.20 1.0 0 -0.84 -0.94
1.20 0.90 1.35 1.52
1.20 1.10 0.18 -0,10
1.30 1.00 1.02 0.35
1.40 1.10 0.74 0.32
1.60
1.80

1.0)
..v0 -J .o%

0.18
0.63

2.)0 -:.00 -1.46

tWE,

0.16
0.20
0.16
0.17
0.16
0.20

0.16
810

0.

0.21

8: 8
0.16
0. 8
0. 9
.0.17

.0.20

0.21
0.16
0.16
0.22
0.18
0.19
0,22
0.2;
0,1
0.20
0.20

1

0.17
0,16
0.18

0,20
0.16

0.18
0.20
0.21
0.17

v.16
0.2:
0.19
0.21
0.16
0.16
0.17
0.20
0.19
0.22
0.22
0.20
0.18
0.19
0.16
0.22
0.20
v.20
.11.16
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Table 3 (continued/

Easy Test

Configuration ALI AL2 BLI BL2 CL

U 0.80 0.68 0.18
2.00 0.18 0.20

410
0 8:40

I

.08
-08:.11!

N8:IO

I. Tit

:1S

6

0 :0:84 8:il

=k ..1t3

is - 0.39

0.49
o:

-0.52
i!

0.17
60 -1.25 0.20
0.90 -0.24 0.20

1:38

.60

.10 iagli

im
1.60

-1.04

- 1.46

0.95
11

8: 1
1:00 1.02 0.22

Ili
0.22
0.21

11.2

-0.03
0.04 0.16

1. 0.26 0.17
0.17

1.1 0.74 0.19

Hard Test

AH1 AH2 BH1 8H2 CH

0.90
0.90 -0.0

f:88 1:ii

.11

laid
1.

0:18 if
0,32

0.50
1:18 -0.45

0.49
0.79 0.61
1.00 -1.46
0.80 -0.39
1.20 -0.52

Ili
0. 8 -1.Q4

k 0 -0.24
-1.25

1:20 0.18
Q.90 0.74
1.10 -0.66
1.80 -0.38

I:10

0.11
0.40
1.52

. 8

0.1
0.16

8

i7
g. 0
.19
20

0.

0.16

0. 8

0/2
0..20

0.261

0
0.1.17

0.19

0.16

0.0
0. 2

8.

0.1

S:11

8:B
0.21

.20
0.16
0

0.22

Note: AL1 and BLI are discrimination and

AL2 and BL2 are discrimination and

AH1 and BH1 are discrimination and

AH2 and BH2 are discrimination and

Base item parameters' are before +0,

difficulty for Trait on the easy test.

difficulty for Trait 2 on the easy test.

difficulty for Trait 1 on the hard test.

difficulty for Trait 2 on the hard test.

+1, or +2 are added to the difficulty parameters.

16
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For Configuration 1, both traits were assumed to be

measured by both tests (Test 1, the easier test or level,

and Test 2, the harder test or level). Zero correlation is

assumed between Trait 1 and Trait 2. All correlations for

difficulty and discrimination, both within and between

traits, are assumed to he zero. This configuration was

chosen as approximating a situation such as Language

Mechanics where Trait 1 is end punctuation (i.e., period,

question mark, exclamation mark), and Trait 2 is middle

punctuation (i.e., comma, colon, semicolon). End

punctuation is typically taught before middle punctuation.

It is assumed that no correlation exists between Trait 1

(end punctuation) and Trait 2 (middle punctuation) since

the ability to understand how to use periods, exclamation

points, and question mars appears to be independent of the

ability to understand commas, colons, and semicolons.

Theoretically, a student could understand and/or master

either trait without any knowledge of the other trait.

The concept of decimals is usually introduced after

other, more basic, concepts (number, addition, subtraction,

etc.) have been taught. Therefore. items measuring

knowledge of decimals usually do not occur in the lowest or

easiest levels of a series of tests designed to cover

kindergarten through high school. Configuration 2 was

chosen to represent such a situation where the second trait

(such as decimals) is measured only by a few items on the

harder test. For the harder test, these few items are

assumed to have equal difficulty on both traits. The

discrimination for these items is assumed to be medium on

Trait 1 (other items) and high on Trait 2 (decimals). All

other items include a range of discrimination values on

Trait 1 and 0 discrimination on Trait 2. A low correlation

between the two traits (knowledge of decimals and knowledge

of ott-_-n- items) is assumed.

17
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Configuration 3 involves a situation in which Trait 2

is measured an the easier test by a few items, and on the

harder test by most or all of the items. For the easier

test the discrimination is assumed to be high for these

items on both traits, while all other items have a range of

discrimination on Trait 1 and 0 discrimination on Trait 2.

The harder test hag a range of discrimination on both

traits. This situation might occur if knowledge of

fractions and fraction Conversions to decimals was one

trait measured on a test (Trait 2 hers) and all other items

were measuring Trait 1 (not fractions or conversions). For

the easier test, a feW items (the fraction/fraction

conversion items) are assumed to have high discrimination

on both traits. It is assumed that these few items are

included in the test in order to measure knowledge of

fractions and fraction conversions and hence should be

highly discriminating on the trait that they are assumed to

measure. It is assumed that they have high discrimination

on Trait 1 (addition, for example) since conceAvably,

test of knowledge of fractions would measure not only

whether a student grasps the concept of fractions but also

whether or not the student can add fractions.

Configuration 4 was chosen as a situation in which the

second trait is measured only by a few items on the .harder

level. The correlation between traits is assumed'ta he

moderate. Difficulty and discrimination are assumed to be

moderately correlated for both tests on Trait 1 and highly

correlated on Trait 2 on the harder test. The difficulty

parameters are assumed to have a medium correlation on the

harder test. This configuration was chosen to reflect a

situation such as Mathematics Computation, where Trait 2 is

ability with fractions (measured only by a few items on the

harder test) and Trait 1 is ability with nonfraction items

(measured at both levels).
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For Configuration 5, both traits are assumed to be

measured by both tests as in Configuration 1, except that

both traits are not assumed.to be measured by all items.

Some items are assumed to be measuring only Trait 1 while

having .zero discrimination on Trait 2. Some items are

assumed to measure Trait 2 only, having zero discrimination

on Trait 1. A few items are assumed to measure both

traits. Also, a medium correlation is assumed between

traits, and discrimination is assumed to be negatively

.correlated across traits. This configuration was chosen to

reflect a situation, such as Social Studies, where the two

traits might be reading ability and ability to understand

graphs. A typical Social Studies test usually-contains some

items pertaining to graphs only. A few items may require

both reading ability and an understanding of graphs. Other

items require reading only.

For Configuration 6, it is assumed that both traits are

measured by both tests and the correlation between traits

is .5. A few items are assumed to have-low discrimination

on Trait 1 for both tests, low discrimination on Trait 2

for Test 1, and high discrimination on Trait 2 for Test 2.

All other items are assumed to have a mixture of high,

medium and low discrimination on Trait 1 and zero

discrimination on Trait 2. This configuration was chosen
as being similar to a situation such as Mat:amatics
Computation, where Trait 2 is ability in computation
problems involving decimals and Trait 1 is ability in

computing all problems not involving decimals. A few items

involving decimals are assumed to have low discrimination

on Trait 1 (no decimals) for both tests, low discrimination

on Trait 2 (the decimal trait) for the lower level, and

high discrimination on Trait 2 for the harder test. The 25
other items are assumed to not measure decimal ability so

have zero discrimination on Trait 2.
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Configuration 7 is the same as Configuration 1 (both
traits are measured by both tests, randomly assign a, b,

and c) except that a moderate correlation is assumed to
exist between Traits 1 and 2. This .configuration might

result from a situation such as a Science test where an
examinee's item responses. could be the result of two
traits: reading ability and knowledge of science facts..

Configuration 8 assumes that both traits are measured
by both tests and that a high (.75) correlation exists

between the two traits. Discrimination and difficulty are
correlated .4 in Trait 1. A test that involves both

mathematics and reading, such as Mathematics Concepts and

Applications, might produce such a configuration.

Configuration 9 is the same as Configuration 1 (both

traits are measured by both tests) except that a high

correlation (.9) is assumed to exist between Traits 1 and
2. This configuration could represent a test such as

Language Mechanics, where Trait 1 is reading ability and

Trait 2 is punctuation ability. A high correlation between

reading and punctuation is assumed since in order to
understand the mechanics of language, both ability in

reading and ability in punctuation must be present.

In a

vocabulary

test

as

Comprehension,

probably exist.

Configuration 10,

correlated across

Configuration

configuration is

a

that might involve both

separate

high

Such

traits,

correlation

a situation

such

between

reading and

as Reading

traits would

is assumed for

with discrimination and difficulty highly

traits.

U is the unidimensional criterion. This

simulated by setting m = 1 in the

multidimensional model used to generate the data.

20
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Data conditions. Combining the above described

configurations results in 33 data conditions: 11 (item

parameter/correlAtion configurations) x 3 (bm - bi) values.

Simulated. Data. The Simulated Data sets include three

groups of simulees for each of the two traits: 2,000 of low

ability, 2,000 of middle ability, and 2,000 of high

ability. The 2,000 theta values for each of the three

levels were generated using the IMSL multivariate normal

random deviate generator, GGNSM (IMSL, 1979). In each case

a normal distribution is assumed (6 = -0.57, SP = 1.0 for

the low ability group, e = 0.0, SD = 1.0 for the medium

ability group, e = 0.57, SD = 1.0 for the high ability

group). .These differences in means were cnosen to be

similar to the differances between ability levels in

published. tests (CTBS/U, Levels E & F, and H J). For the

33 data conditions, response vectors were generated for

each of the three groups of observations for tests of 30

items each.

Separate sets of data were generated for parameter

estimation and for cross-validation. For parameter

estimation, data were generated for each of the 33

conditions described above. Thirty-three new sets were

generated to be used for cross-validation purposes.

Response vectors. Using the prespecified "true"

parameters (aAll aim, bAl, b12, cA, 0_11, Qjm) and the

multidimensional model, PA(941,0,=) was computed cor each

observation. From these P1(0.12,9j=) values, (0,1)

responses, utik, were generated for each item i, simulee i,

and test k, where usshe is 1 if a random number is less than

or equal to PA(9,119,m) or 0 otherwise. The rP41aLm number

was generated from a uniform distribution using IMSL

subroutine GGUBS (IMSL, 1979).
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Responses were generated for all simulees for both
tests (Test 1 and Test 2). For item parameter estimation,

only responses to Test 1 were used for the low ability
group and only responses to Test 2 were used for _ite high

ability group. For the medium ability group, only
responses to the anchor test were used. Responses for all
simulees to both tests were used to examine the factor
analyses.

data verification

The means and standard deviations of the number-correct

scores, item difficulties (p-values), and the KR-20 test
reliability coefficients from the simulated tests were
examined in order to verify that the simulations are
realistic.

Verifying Multidimensionalit,!,

In order to determine whether the generated data
accurately simulate real data, the following factor
an\lyses were performed: principal component analysis of

tetrachoric correlations and principal factor analysis of

phi coefficients (McKinley & Reckase, 1982; Reckase, 1979).

Both principal component analysis of tetrachoric
correlations and principal factor analysis of phi

coefficients were used.

The factor analyses were examined in terms of the
proportion of variance accounted for by the first factor.

This is based on the assumption that a set of items is

unidimensional if a large amount of the variance is

accounted for by the principal factor or- component. For

this study, a procedure similar to that suggested by Lord

and Novick (1968, pp. 381-382) for evaluating

unidimensionality by performing a principal axis factor

analysis was used. The first four factors were extracted
using estimated communalities in the diagonal. (The

diagonal values in the correlation matrix are replaced by
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the squared multiple correlation of each variable with all

other variables.) The items may be considered as arising

from a unidimensional latent space if the first common

factor accounts for a "large" proportion of the common

variance and if all factors after the 'first account for

much smaller and approximately equal proportions of the

common variance.

Determination of whether the first two factors account

for a "large" proportion of the common variance was done by

comparing the data generated by the multidimensional model

with that generated by the unidimensional model. The

deviation of the multidimensional data from the

unidimensional data was then determined by comparing the

percent of variance accounted for by the tirst two factors

in both sets of data.

Parameter Estimation

For eacn of the 33 data conditions, item parameters

were estimated with LOGIST (Wingersky, Barton, & Lord,

1982). Item parameters for Test 1 were estimated using

responses from the low and medium ability groups.

Similarly, item parameters for Test 2 were estimated using

responsei from the medium ano high ability groups. This

allows combined samples of 4,000 simulees, a sample size

that has been found to be adequate for obtaining very

stable item parameter estimates (Yen,1953). Since separate

pairs of LOGIST runs were made for each of the 33 data

conditions, the result is two sets of estimated item

parameters and estimated thetas per pair of tests. Far each

of these 33 conditions, the accuracy of the parameter

estimates was examined.

23
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Accuracy of the Parameter Estimation

A desirable characteristic of a parameter estimation
procedure is than ability to obtain accurate item
parameters. For use of IRT estimation procedures for the
one-dimensional case, the assumption of unidimensionality
is required in order to estimate the parameters for a given
set of items and the examinee's trait levels (Lord &
Novick, 1968, Ch. 16). Violation of this assumption has
been suggested as a problem in estimation of item
parameters (Loyd & Hoover, 1980; Cook & Eignor, 1981).

The data used here are known to exhibit
multidimensionality. Therefore, it is informative to
examine the effect of this multidimensionality on the
estimation of the true parametifie4, a, b, c, and 0. This
effect can then be considered when the estimated item^ A ^
parameters, a, b, and c, are used to perform an equating or
for other purposes.

Although in real life situations the real parameters
are not known, one of the advantages of using simulated
data is that the "real" item parameters are known; the
"r-..31" item parameters are those used to generate the data.

Hence comparisons between real and estimated parameters can
be made and such comparisons can be used to examine the
accuracy of the estimation procedure.

Within level oarameter estimation. Examining the
accuracy of the parameter estimations within levels
involves comparing in some way the multidimensional true

(generating) parameters and the unidimensional estimates.
The approach used by Yen (1984b) is the method used here.
P1(06.) = P1(06.1,91.70.) if

As
ci = ca, and

" ./.
at(ef. bi) = as1(kilu2 bat) at2(Ok2 - loam).

24
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The closed form relationship betwee.o the unidimensional

estimated parameters and the multidimensional true

parameters is approximated by finding the unidimensional

parameters that minimize the sum of the squared differences

between the two sides of Equation 5. Then

agibls + al=b1=

A
at,

^ ^
cubs = as sbs s + alzbt2,

(6)

(7)

A A
a, = atlr(021Q) + atar(0=,e), and (8)

(i at at ) Qk + (4 a*mas. ) ek2
44146 = (9)

Equations 4, 6, 8, and 9 give the approximation of the

relationship between the unidimensional esti/m4,ed

parametuers and the multidimensional generating parameers...

Within Level Comparisons

The accuracy of the estimation procedure was examined

by comparing both sets of true item parameters, from Test 1

and from Test 2, to the estimated item parameters, and by

comparing true thetas to the estimated thetas using

correlations. Estimated bi values were.compared with each

of the two sets of true bi values (bat and biz) for both

traits. Similarily for al values. The estimated ci values

were compared with the one set of true cl values. The

estimated thetas (9) were compared with the true thetas (k-il

and for the two traits.

25
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Cross Validation

The Cross Validation data were generated in the same
manner as were the Simulated Daita (i.e. using the same data
configurations and item parameters, but different seed
numbers for the data .generation).' The Cross Validation
data sets consist of a pooled group of three sets of
observations'. 2,000. of low ability, 2,000 of middle
ability,- and 2,000 of high ability. Response vectors and
p-values were also generated as for the Simulated Data.

Using the fixed item parameters that were estimated
from the original data, thetas were estimated for the Cross
Validation data. In the first run, thetas were estimated
for Test 1 using item responses for all three ability
levels on Test 1 and not reached (NR) for Test 2. Item
parameters were fixed at the values estimated in the
parameter estimation runs for the original data.
Similarily, in the second run, thetas were estimated for
Test 2, using item responses on Test 2, NR on Test 1, and
fixed item parameters. The accuracy of the item and ability

parameter estimates was then examined in the same manner as
for the Simulated Data.

RESULTS

True Item Parameters

All desired and attained correlations among the item
parameters used for generating the two-trait data are
within t.10 of the desired correlations, hence the attained
correlations appear to be acceptable.

Simulated Thetas

Attained correlations between generated thetas on both
traits are all within .04 of the desired correlations.

Mean thetas are all within .08 of the desired mean ability
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for all three ability levels and the standard deviation of

the generated true thetas are all within .05 of the desired

standard deviations. The simulated thetas appear to be

acceptable for Simulated and the Cross Validation data.

Simulated Item Responses

Table 4 contains means and standard deviations for

number-correct scores for the pairs of simulated tests for

Simulated and Cross Validation data. The simulated tests

appear td be realistic, although for the G. bs = 2

conditions, Tests 1 and 2 differ a great deal in

difficulty. Recall that Test71 and Test 2 are simulated to

have equal difficulty when G. GI = 0. When G= b1 = 1

or 2, Test 2 is the harder of the pair of tests. Tests 1

and 2 have., very similar difficult,ies for all configurations

when 6= 3. = 0. For all configurations, Test 1 appears

easiest and Test 2 hardest when b= - b1 = 2. The Cross

Validation data follow the same.pattern.

Table 5 contains the KR-20 '-yalues for the pairs of

tests for the Simulated and the Cross Validation.data. The

KR-20 values range from .74 to .94. With the exception of

Configuration 3 and the medium+high ability group of

Configuration 5, all KR-20 values decrease or else increase

at most .01 as the tests go from easiest to hardest.

For Test 1, Configuration 3 has only five items that

measure Trait 2. These five items have high discrimination

on both traits. Test 2 measures both traits with all

items. When b= - bi = 0, the KR-20 for Test 1 is .05 to

.06 less than the KR-20 for Test 2. This contrasts with

the .00 to .02 differences for all other configurations.

Also, for b2 - bl = 0, the Test 2 KR-20 is larger than any

Test 1 KR-20 in Configuration 3.

Configuration 5 also breaks the trend of KR-20

decreasing with increasing test difficulty by having its

next to smallest KR-20 on the easiest test for the

9
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medium+high group of simulees. The overall trend appears
to be that the hardest-test for each configuration (b.= - 171

m 2, Test 2) has the smallest KR-20.

Another overall trend is that Configurations 1, through
6 and the unidimensional configuration have ranges of KR-20

values from the upper 70s to the upper 80s and lower 90s
for the low+medium group and a range of 80s to upper 80s
and lower 90s for the medium+high group. However,
Configurations 7 through 10 have overall higher KR-20
values. The low+medium group ranges from the lower 80s to
lower 90s and the medium+high group are all in the lower
90s.

The Cross Validation KR-20s follow the same patterns as
the Simulated Data. All. cross validation KR-20s
are within .02 of the original data KR-20s.
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Tables 6..through_a_cantai_n_frha-results of the factor
-:.

analyses ' for the Simulation Data and for 'the Cross

Validation. Table 6 contains the correlations between the

first two factort for the oblique rotations. There appears

to be no pattern in the correlations that discriminates

between the unidimensional criterion and the

multidimensional data. configurations. All. correlations

range between .33 and .60 for the principal components

analyses (PCA) 1. and between .53 and, .76 for the factor

analyses using squared multiple correlations in the

diagonals .(SMC).
. .

A few patterns appear. For the PCA, all correlations

for Test 2 decrease as the test gets harder (F)21-,-

increases from 0 to 'Ito 2), and most correlations for Test

1 decrease as the test gets aasier (b2 - b1 increases from

0 to 2). Also four PCA, the smallest correlations in each

configuration ,are ''for the condition where b2 - 131 =.2. This

is al m:3 'true for most of the configurations for SMC. For

both types of analyses, Configuration 4 has the highest

correlations per condition and Configuration 5 the lowest.

Configuration 2 has the greatest range of correlations,

with a spread of .22 points (.35-to .55) on PCA. compared to

. 05 to .11 for all other configurationF, and a. spread of

. 13 points (.58 to .71) on SMC compared to .02 to .06 for

all other comfigurations. One other pattern that emerges

is that Configurations 2 and 7 have smaller correlations

for Test 2 than for 1 on both PCA and SMC.. All other

configurations have overlapping correlations for Test 1 and

Test 2.

Overall, the Cross Validation correlations follow the

same general patterns as the Simulated Data. The Cross

Validation correlations are at most +.05 from the

corresponding Simulated Data.
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Table 7 cotains the first four eigenvalues from the

principal compkTents analyses. For all data sets,

including the/unidimensional, there appears to be a strong

first **actor and a much smaller 'second factor. In

additio9 Configurations. 5, 6, and 10 appear to have a

third. small factor,. which for Configuration 6, Test 2 is

almost as large as the second +attar. Configuration 9

appears to have the largest first factor and Configuration

5 appears to have the smallest.

Recall that the colifigurations are' arranged such that

the correlation between traits increases from .00 for

Configuration 1 to 1.00 for Configuration U (.0, .3, .4,

.5, .5, .5, .6, .75, .9, .9, 1.00) . With the exception of

Configurations 1, .5, 10,.and the unidimensional criterion,

the size of the first eigenvalue increases As the

correlation between traits increases. Also, as the test

gets harder within a configuration (i.e. moving from the

first entry for a given configuration through the last),

the size of the first eigenvalue decreases. The only

exception is that the condition b2 -b1 A 0, Test 2 has the

largest eigenvalue for Configuration 3, and for all other

configurations, the condition b2 - bi = 1, Test 1 has the

largest.

The first eigenvalues of Configurations 1, 7, 8, 9, 10,

and Test 2 of Configuration 3 are clearly greater than the

first eigenvalues of the unidimensional criterion. The

first eigenvalues of Configuration 5 are clearly smaller

than the corresponding eigenvalues of the unidimensional

criterion. The irst eigenvalues of the remaining

configurations (2, 4, 6, and Test 1, Configuration 3) are

approximately equal to the first eigenvalues of the

undimensional criterion.

In general, the Cross Validation data follow the same

patterns as the Simulation Data.



Parameter Estimation
33

Table 7

Tho First AM Eigenvalmil irye Principal Components Analyses (PCP)

Configuration WI fest

!isolated Data Cross Validation

linvmut:

I .1 18:II '1 [11 11

.97

Oi
li

1 1

2

3

2 1

li.1 11 lill [II ill I:81 1:9

:

01131

11

3

21 il I:1 11 11 1:1 II:1 :if 11

1 2

1

1 111 1101 1110 11114 11: 1:101 :II

I/

44

1:4..1 iiii Ili :::11 ill rill Ili

,99

.p93

2

i

3 1

1.00

I 21 11 lill ill :::1/ rill rill 0 1.:101

21 ill I:11 ill 11 ii:ll I: ill :11

ill

8

21 I:11 1:11 .44:311 I/11 1111 ."4591

ill

,6S

'11 :7911

33 \

1

10

21 l'i '14/ 411 I/11 1111

:III

iii 1 :19'
.97 .96

1 Ili! 1::11 [C131 111 1111 1.::11

1:q
..s!

.07

li

.8i

.1°

2

1

U 1
:991

.44

.84

2 ill

,9q;

li 'II 11! iiii

.9!

.96
iiil ji .14



Parameter Estimation
34

Table 8 contains the first four eigenvalues from the

factor Analyses using squared multiple correlations (SMC).

SMC follows the same patterns as PCA. All data sets appear

to have a strong first factor and a much smaller second
factor. Configurations 5, 6, and 10 appear.to have a third
small factor, uhicA for Configuration 6, Test 2 is almost
as large as the second factor. Configuration 9 appears to

have the largest'first factor. and Configuration 5 appears
to have the smallest.

The .,size of the :First eigenvalue generally increases as
the correlation between traits increases, with the

exception of Configurations 1, 5, 10 and the unidimensional
criterion. The size of the first eigenvalue decreases as
the test gets harder within a configuration except that
condition bm - bz = 1, Test 1. has the largest for all

configurations (except Cohfiguration 3 where the condition.

bz - b1 = 1, Test 2 is largest)."

The first eigenvalues of Configurations 1, 7, 8, 9, 10,
and Test 2 of Configuration 3 are clearly greater than. the

first eigenvalues of the unidimensional criterion: The/

first eigenvalues of Configuration 5 are clearly smaller

than the corresponding eigenvalues of the unidimensional
criterion. The first eigenvalues of the remaining

configurations (2, 4, 6, and Test 1, Configuration 3) are

approximately equal to the first eigenvalues of the

undimensional criterion.

As with the principal components analyses, the Cross.

Validation data 'generally follow the same patterns as the
Simulation Data.
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Table 9 contains the nercent of variance accounted for

and the cumulative percent of variance accounted for by the

first four eigenvalues. The percent of variance accounted

for by the first eigenvalue ranges from 16 to 40 percent.

The percentages for Conficurations 1, 7, 8, 9, 10, and Test

2 of Configuration 3 are mostly in the thirties and upper

twenties, while for Configurations 2, 3 (Test 1 only), 4,

5, 6, and U, the percentages are all in the upper teens and

lower twenties. The Cross Validation values are all within

+.01 of the Simulated Data values and are not reported.

here.

Table 10 contains the percent of variance accounted for

and the cumulative percent of variance accounted for by the

first four eigenvalues for the factor analyses using, SMC.

For Configurations 2, 3 (Test 1 only), 4, 6, and U, the

first eigenvalues account for at least 101% of the variance

in most conditions. For Configurations 1, 3 (Test 2) , 5,

7, 8, 9, and 10, the percent of variance accounted for is

mostly between 90 and 100\with the exception of conditions

where 6- = - 132 = 2, Test 2 (the hardest test in each

configuration). The second eigenvalue accounts for 6 to 10

percent of the variance in Configurations 2, 3 (Test 1), 4,

6, and U, and accounts for 9 to 14 percent of the variance

for Configurations 1, 3 (Test 2), 7, 8, '91 and 10. Most

notable is Configuration 5, for which the second eigenvalue

accounts for 19-22 percent of the variance.

The percent of variance accounted for by the third and

f.ourth eigenvalues is near zero for all configurations and

all conditions. The cross validation data values are all

within +.02 of the Simulated Data values and are not

reported here.

3~1
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Parameter Estimation, Tables it and 12 contain
comparisons of true versus estimated parameters. Table 11
contains the correlations of the true and estimated item
parameters for the Simulated Data. For Configurations 2, 3
(Test 1), 4, 6, 10, and U, the correlations between
difficulty on Trait 1 (b1) and estimated difficulty. (g) are
all .90 and above. In particular, the correlations for b
and 121 are all .98 and .99 for Configuration U. For
Configurations 1, 3 (Test 2), 5, 7, 8, and 9, the
correlations are all under .80 with most between .60 and
.78. The most notable exception is that the correlations
between b and b1 for Configuration 5, Test 2 are .26, .367;
and .34 in order as the test gets harder. These are the
only correlations between estimated difficulty and
difficulty on Trait 1 that are under .59.

For the correlations between estimated difficulty (4.;)

,-and difficulty on Trait 2 (b2), the best col-elations '(.87
to .95) are for Configuration 10, the multidimensional
configuration with the highest correlation (.90)-. between
traits. All other correlations between b and ba are .78 or
less. For Configurations 2, 3 (Test 1),. 4 (Test -1) , and 6,

the correlations are all below .20. The /correlations for

Configuration 5, Test 1 are .24 to .30. For Cpnfigurations
1, 3 (Test 2), 4 (Test 2), 5 (Test 2), 7, 8, and 9, the

correlations are all between .50 and .77.

The correlations between b and b2 are all within +.15.
A

of the correlations between b and b, for Configurations 1,

3 (Test 2), 7, 8, 9, and 10. For Configuration 4 (Test 2)
these correlations are within .21 to .30 of each other and
for Configuration 5 they are within .33 to .53. However,
the largest differences for the correlations of estimated
difficulty and difficulty on Trait 2 versus estimated
difficulty and difficulty on Trait 1 occur for

Configurations/ ,' 2, 3 (Test 1), 4 (Test 1), and 6. These
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correlations range from .78 to .96 less for r(g,b2) than

for r(13,b1).

Note the large differences and the increase in size of
A

the correlations_r(b,bs) and r(b,b2) for Configuration 5.

For Test 19 the correlations of estimated difficulty with

difficulty on Trait 1 are .77 or .78 and for Test 2 the

correlations are .26 to .36. The reverse is true for Trait

2. Test 2 has the higher correlations. (.67 to .77) and

Test 1 has the lower (.24 to .30).
A

The correlations of b with (alb* + a=b2) /a are mostly

.98 and higher. A few are in the lower .90s with one .89.

The correlations of estimated discrimination (a) with

true discrimination on Trait 1 (al) follow some of the same

patterns as the correlations between estimated and true

difficulty. The highest correlations between aA and as are

for Configurations 2, 3 (Test 1), 4, 6, and U, as was true
A

for the correlations between b and bl. However, the only

configurations with correlations in the .90s are

Configurations 3 (Test 1), 4, and U. Configurations 2 and

6 are in the .70s and .80s. Configurations 19 3 (Test 2),

7, 8, 9, and 10 are all between .40 and .72, with one

exception. Condition b2 - bl = 2, Test 2, Configuration 7

is a very low .31. Configuration 5 has the lowest overall

correlations on Trait 1 (.11 to .41), and with the

exception of Configuration 4, Configuration U has the

largest correlations.
A

For the correlations of estimated discrimination (a)

with discrimination on Trait 2 (a2), the first 2 conditions

of Test 1, Configuration 3 have the largest correlations

(.80 and .83). All other correlations are .73 or less.

Configurations 1, 8 (Test 2), 9, and 10 are mostly between

. 50 and .73. Correlations for Configuration 7 range from

. 44 to .55, and Configuration 3 (Test 2) correlations range

from ..25 to .55. Configuration 5 correlations are mostly
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in the .30s. All correlations for Configurations 2, 4, 6,
and 8 (Test 1) are less than .31. In particular, for
Configuration 6, all correlations of estimated
discrimination with discrimination on Trait 2 are negative.

Note that, except for Configuration 10, the same
configurations (2, 3 Test 1, 4, 6, and U) have the best
correlations for Trait 1 discrimination as have the best
correlations for Trait 1 difficulty.

Configuration U has the best overall correlations (.90
to .95) between a and albi + ambm. Correlations for

Con+iguratiwns 2 (Test 1), 3 (Test 1), 4, 5, and 6 (Test 1)
are mostly in the upper .80s. Correlations for
Configurations 1, :I :Test 2), 7, and 9 are mostly in the
. 70s and lower .80s. For Configurations 8 and 10, the

correlations are mostly in the .60s and .70s. Test 2 for

Configurations 2 and 6 has the lowest correlations: .53 to
. 54 for Configuration 2, Test 2, and .46 to .55 for
Configuration 6, Test 2. Note the difference in size of

correlations between Test 1 and Test 2 for Configurations
2, 3, and 6.

There appears to be no pattern for the correlations
between c and c. These correlations all range between -.05
to .79 with some of the poorest correlations ocurring for
the unidimensiunal criterion.

With very few exceptions, all Cross Validation
correlations are equal to the corresponding Simulated Data

correlations. The exceptions are all within +.02 of the
Si..41ated Lata correlations.
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Table 12 contains the correlations between the true and
estimated trait values for both Simulated Data and Cross
Validation. The correlations between estimated ability 4)
and ability on Trait 1 (01) range from .44 to .92.

Configurations 2, 3 (Test 1), 4, 6,. and U have correlations

ranging from .79 to .92 with most correlations in the .90s.
For each of these configurations, the smallest correlation
is for condition 12= bl m 2, the hardest test. The

correlations for Configurations 3 (Test 2), 5, 7, 8, 9, and

10 are mostly in the .70s and .80s, except the hardest test
of Configuration 5 with .67, and the easiest test of each
of Configurations 7, 8, 9, and 10 which are .52, .55, .56,
and .59, respIttively. Overall, Configuration 1 has the
smallest correlations between 3 and 01 of all the
configurations, ranging from a low of .44 for the easiest
test and from .62 to .68 for the other conditions.

In general, the correlations for Configurations 1, 3
(Test 2), 5, 7, 8, 9, and 10 increase as the correlation
between traits increases.

The' correlations of estimated ability with ability on

Trait 2 are all approximately equal\to the correlations of

estimated ability with ability on Trait 1 for corresponding

conditions of Configurations 1, 3 (Test 2), 5, 7, 8, 9, and
10. For Configurations 2, 3 (Test 1), 4, and 6, the Trait

2 correlations are all .29 to .56 less than the

corresponding Trait 1 correlations. In general, these

differences decrease as the correAations between traits
increases.

The correlations between 0 and :I are mostly in the
.60s and .90s. The smallest correlations are .58 for the
easiest test of Configurations 7, 8, 9, and .60 for the
easiest test of Configurations 1 and 10. HIl other

correlations are .76 and above. The smallest correlations

for each of Configurations 2, 3, 4, 5, 6, and U are all. on
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the hardest test and range from .77. to .83.

For Configurations 1, 3 (Test 2), 5, 7, 8, 9, and 10,

the correlations between 3 and 0°1' are larger than the

corresponding correlations of 0 with both 9% and =. lhis

difference decreases as the correlation between Qi and 0=

increases. For Configurations 2, 3 (Test 1), 4, and 6, the

correlations between E; and 01* are approximately equal to
^ ^

those between 0 and 01 and hence the correlations between 0

and 0 are much larger than the corresponding correlations
A

between 0 and 0= (since the correlations between 0 and ez

are much larger than the corresponding correlations between

9 and 0= for these configurations). This ,difference

decreases as the correlation between 01 and 9= increases.

The Cross Validation correlations are' all +.03 of the

corresponding Simulated Data correlations with one,

except*on. The correlations for Configuration 2, Test 1,

b= - bl = 0 is .17 points larger for the Simulated Data

than for the Cross Validation data for both r(9191) and

r(0,0=).
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DISCUSSION

The purpose of this research is to examine the effects

of various multidimensional data configurations on

parameter estimation. with the three-parameter logistic

model. Ten two-trait data configurations and one

unidimensional criterion were chosen. For each of these

eleven configurations, three difficulty conditions were

simulated.- Data were generated using a multidimensional

model for degrees of correlation between traits of .00 to

.90 and one unidimensional criterion.

Simulations: The simulated item parameters and thetas

were well within acceptable limits-of the desired values.

Means, standard deviations, and .KR-2C) values of

number-correct scores indicated that all the conditions

simulated realistic test configurations.

Multidimensionality. Two factor analyses were examined

in order to verify the multidimensionality of the generated

data. The factor analyses do not seem to consistently

discriminate since for all data sets; including the

unidimensional criterion, there appears to be a strong

first factor and a much smaller second factor. Hence, all

the data sets appear to be two-o: mensional. The

correlations between the first two factors do not appear to

have any pattern that discriminates between the

unidimensional criterion and the multidimensional data

configurations. These correlations certainly fail to

follow the pattern of correlations between traits ranging

from .00 to .90 for the multidimensional configurations.

This is similar to the McKinley and Reckase (1984)

findings that correlations between factors did not follow

the pattern of correlations between traits for
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two-dimensional simulated data. However, for the McKinley
and Reckase data, the size of the first eigenvalue
decreased and the size of the second eigenvalue increased

as the correlation between the two traits decreased. This
is in direct contrast to the general trend that can be seen
in the data presented here. In general, as the
correlations between traits decreases, the size of the
first eigenvalue increases. The multidimensional model
.used by McKinley and Reckase to generate their data is an
extension of the Birnbaum (1968) two-parameter model that
Uses two discrimination parameters and one item parameter

related to difficulty. Clearly, the multidimensional model

used here and the multidimnnsional model used by McKinley

and Reckase are generating different data configurations.

Upon examining the first four eigenvalues of the

principal components analyses (PCA) and the factor analyses

using squared multiple correlations (SMC), a few patterns
emerged :that caused a rethinking/restructuring of the

multidimensionality (or lack of it) for each of the chosen

configurations. The 'true' item discriminations for each

test were chosen to represent real data in that if an item

does not measure a trait on a test then the discrimination

for that item cm that trait is zero. If an item does
measure a traAt em a test, then the discrimination of that

em on that trait. is non-zero.

The iter. discriminations for each test for each

configuration were examined from the point of view that if

most or all of the items "load" (discriminate) on one

dimension only, then the test is probably unidimensional or

near enough so to be called unidimensional. If most or all

of the items "load" on both dimensions, then the test is

probably multidimensional.

This rauses a grouping of the multidimensional

co.ofigurations into three groups (actually four), based on
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the dimensionality of the tests. Clearly, both tests of

Configurations 1, 5, 7-10, and Test 2 Configuration 3, are

multidimensional since for Configurations 1, and 7 -10,.

every item measures both dimensions, and for Configuration

5, 17 items (over half) measure Trait 1 and 17 items

measure Trait 2. Hence, Group Ml, a multidimensional

group, consists of Configurations 1, and 7-10. Group M2,

also a multidimensional group, consists of Configuration 5

alone since it is the only configuration with about half of

the items measuring each dimension.

Another group (Group U) can be considered as a group
.

with unidimensional tests. Group U consists of

Configurations 2, 4, 6, and U. Both tests on these

configurations and Test 1 Configuration 3 can be expected

to be unidimensional because Trait 2 is either not measured

at all or iR measured by only five of the 30 items, (i.e.,

Discriminations on Trait 2 are all zero or only five items

"load" on Trait 2). For Test 1 of Configurations 2 and 4,

Trait 2 is not measured at all, hence has zero

discriminations for all items. Therefore, Test 1 for

Configurations 2 and 4 are expected to be unidimensional.

Similarily, Test 1 of Configurations 3 and 6, and Test 2 of

Configurations 2, 4, and 6 are all probably unidimensional

since 25 of 30 items do not load on the second trait.

The two tests of Configuration 3 fit in different

groups (Test 1 is unidimensional and Test 2 is

multidimensional). For the sake of brevity of discussion,

Test 1 will be considered as part of Group U and Test 2 as

part of Group Ml, although, strictly speaking, the groups

consist of two-dimensional configwations, not individual

tests.

The factor analyses were then reexamined- taking these

groupings into account. The first eigenvalues of Group M1

are all greater than the first eigenvalues of the
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unidimensional criterion. For Group M2, the first

eigenvalue is clearly less than the first eigenvalue of the
unidimensional criterion. For Group U, the first

eigenvalue is approximately equal to the first eigenvalue
of the unidimensional criterion. Recall that the tests of

Group U are considered unidimensional by the discrimination
(loading) criterion. Note, then, that these factor
analysis results do support the grouping of the

configurations into those with multidimensional tests

versus those with unidimensional tests. When the

configurations consist of unidimensional tests, the first

eigenvalues are approximately equal to the first eigenvalue

of the unidimensional criterion. When the configurations

consist of multidimentional tests, the first eigenvalues

are either larger than or smaller than the first

eigenvalues of the unidimensional criterion.

Configuration 5 is similar to the McKinley and Reckase

Test 1 data and the Group M1 configurations are similar to

the McKinley and Reckase Test 2 data. In particular,

keeping in mind that different generating models are

involved, the McKinley and Reckase Dataset 2 with a

correlation of .5 between traits is similar to

Configuration 5 which also has a correlation of .5, and

McKinley and Reckase Dataset 8 has the same correlation (0)

as Configuration 1. For Dataset 2, the correlation between

factors for the PCA was -.59, compared to correlations of

. 45 to .50 for Configuration 5. The correlations for

C.onfigurations 8 and 1 versus Datasets 5 and 8 are .55 to

. 60 and .46 to .57 versus .62 and -.57. These latter

correspond more closely than the Configuration 5 versus

Dataset 2 correlations. The McKinley and Reckase Test 2

correlations between factors varied as correlations between

traits decreased, as is also true for the corresponding

data sets here (Group Ml configurations).
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The first four eigenvalues for Dataset 2 were 9.09,
4.79, 1.30, and 1.28,'indicating 'a 'strong first factor 'and
a smaller second one. In contrast, the Configuration 5

eigenvalues indicate three factors, a strong first factor

and weaker second and third factors. Agaid, the generating
models seem to be simulating different things. For all

McKinley and Reckase Test 2 datasets, the first four

.eigenvalues indicated a large first factor and an extremely
small or nonexistent second factor. The size of the first

eigenyalue decreases and the size of the second increases
as the correlation betweentraits decreases. Although not

as clear, the same general trend of a decrease in the first

eigenvalue as correlations between ability decreases

appears in the data reported here for Group Mi. However,
Group M1 appears to -ikve a small second factor, while the

McKinley and Reckase Test 2 data'do not.

The percent of variance accounted for by the first

eigenvalue for the PCA also supports the pattern of.

groupings. Group M1 percentages are mostly in the 30s and
upper 20s. Group U and the unidimensional criterion

percentages are all in the tens and lower 20s. Group M2

also has percentages in the tens and lower 20s.

For the SMC, the percent of variance accounted for

discriminates between these groups even better than the PCA
does. For Group U and the unidimensional criterion, the

first eigenvalues accounted for at least 1017. of the

variance in most conditions, and the second eigenvalue

accounts for 6-10% of the variance. For Group Ml,' the
percent of variance accounted for by the first eigenvalue

is between 90 and 100, except for the hardest test in each

configuration, and the second eigenvalue accounts for 9-14%
of the variance. The first eigenvalue for Group M2

accounts for 92-102% of the variance. The second eigenvalue

for Group M2 accounts for 19-227. of the variance.
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Therefore, clearly, Configuration 5 (Group M2) is

multidimensional, with a dominant first factor. The

multidimensionality of Group M1 also verified by the
factor analyses using SMC. The SMC analyses support
unidimensionality for Group U and the unidimensional
criterion. (i.e. Those multidimensional configurations that
appear to have unidimensional tests appear to be as
unidimensional 423 the unidimensional criterion. Those

multidimensional configurations with multidimensional tests
are supported by the SMC factor analyses as being composed

of two-dimensional tests as they were constructed to be.)

The multidimensionality of Configuration 5 supports
the McKinley and Reckase (1984) conclusions that when the

two dimensions underlying the tests are independent of each
other (i.e. each item discriminates on only one of the
dimensions) then correlated abilities tend to yield

response date with a dominant component.

McKinley and Ri.ckase also found that when the two

dimensions underlying the test do not operate independently

of each other (each item discriminates on both dimensions),

then the effect of the correlations between abilities is

the same, but less extreme, (i.e. correlated abilities tend

to yield response data with a dominant component). The

Group M1 data also appear to yield a dominant conponent.

However, in contrast to the McKinley and Reckase Test 2

data having extremely small or no second factors, the Group

M1 data appear to have a small second factor and in some

cases a third factor.

It appears that the size of the correlation between

traits used in generating the data with the

multidimensior.al model used here was not as important in

causing the data to be multidimensional as was the pattern
of the loadings of the discriminations on the traits for

the two tests. However, with the McKinley and Reckase
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model, the dimensionality of the response data appears to

depend on the ability correlations. Correlated abilities

tended to yield response data with correlated dimensions

(tended to be unidimensional) and .uncorrelated abilities

tended to yield response data with relatively uncorrelated

dimensions (tended to be multidimensional).

Parameter estiqatiml. How well the item parameters,

were estimated appeared to depend to some extent on whether

or not the tests were unidimensional or multidimensional.

For Group U and the unidimensional criterion, bs was

estimated well. Configuration 10 also has very good

estimates for b1. For Group Ml, b1 was not estimated as

well. Especially notable is the extremely poor estimation

of b1 for Configuration 5, Test 2 (Group M2).

Configuration 10 had the best estimation of b2. This

would be expected since the correlation between 122 and b1

/is .80. The poorest estimations of b2 occurred for Group U

I (except Configuration 4 Test 2), and for Configuration 5,

; Test 1. Group M1 (except Configuration 10), Configuration

4 Test 2, and Configuration 5 Test 2 estimates, while also

poor, were a little better than Group U.

Since LOGIST produces only one b, then b has to

estimate both b1 and bm. If the correlation between 121 and

122 is low, either o can estimate b1 well, or b can estimate

b2 well, cr it can estimate both poorly, but it cannot

estimate both well. If the correlation between b1 and:122

is medium, then the estimate of both b1 and 122 by b can be

medium to poor, or possibly one can be estimated well and

the other medium to poor. If the correlation between b1

and 122 is high, then the estimation of both b1 and 132 must

be about the same, ranging from poor to goad.

If the correlation between bl and 122 is high, then

LOGIST is trying to estimate practically the same

difficulty values. If LOGIST did not estimate both bl and
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bm well, then perhaps LOGIST would be suspected of doing a

poor job of estimating the difficulty parameter.

Note in Table 1 that the correlation between ba and bm
is zero for all configurations oilccap_t__Comfiguratiorv_.10_1_
where the correlation is .8 and Configuration 4 Test 2,

where the correlation is .5. For Configuration 10, since
the correlation between bl and bm is so high, the excellent
estimation of both would be expected. Similarily, the
medium correlation between ba and b for Configuration 4

Test 2 could be expected since the correlation between las'

and bm is .5. However, since there is zero correlation

between ba and bm for all other conditions, and ba was well

estimated for Group U, then b2 could not be estimated .very
well.

Both ba and bm were estimated very poorly for
Configuration 5. Mote the large differences and the
increase in size of the correlations r(b,b2) and r(b,bm).
For Test 1, the correlations of estimated difficulty with
difficulty on Trait 1 are .77 or .70 and for Test 2 the

correlations are .26 to .36. The reverse is true for Trait
2. Test 2 has the higher correlations (.67 to .77) and
Test 1 has the lower (.24 to .30). These two sets of

correlations are the lowest of all configurations for the

corresporv!ing traits. Configuration 5 Test 2 has the
lowest correlations for Trait 1 and Configuration 5 Test 1
has the lowest for Trait 2 for the multidimensional tests.
For Group Ml, the estimation of bm was mediocre, not as

poor as the Group U estimates and nearly as good as the
Group M1 estimates.

In spite of the fact that LOGIST is intended for only

unidimensiJnal tests, has done an excellent jo0 of
estimating difficulty for these various multidimensional
data sets. When the correlation between bl and la= was
high, the estimation of both bl and la= was good. When the
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correlation between bl and bm was medium, bl was well

estimated and b= was estimated neither poorly nor well.

Similarly, when the correlation between bl and bm was zero,

and Trait 2 was measured by few or no items, then the b

parameter was estimated well for the trait that was

measured and very poorly for the trait that was not

measured. This would clearly indicate support for the

belief that LOGIST is doing the task for which it is

intended, at least, as far as estimating difficulty is

concerned.

The differences between the correlations r(tIbi) and

r(b,bm) also tend to follow the grouping pattern. The

largest differences are for Group U, where b, is estimated

very well and bm is estimated extremely poorly. For Group

M2, Test 1 Configuration 5 has fairly good estimates of bl

and poor estimates of bz, while Test 2 has fairly good

estimates of bz and poor estimates of b,. This follows

logically from the fact that nearly 'half the ...teaks (13 of

30) do not measure Trait 1, 13 others do not measure Trait

2, and only 4 items measure both traits. Therefore,

approximately half the items "load" (discriminate) on trait.

1 and half on Trait 4. This allows one trait to be

estimated fairly well while the other is estimated poorly.

It appears that how wellthe difficulty parameter is

estimatFd depends on an interaction between whether or not

the test is unidimensional according to the "loading"

criterion, and how closely correlated the difficulty

between the two traits is. If the item clearly measures
one trait and not the other, the difficulty parameter on

the trait measured is estimated well. However, if the test

measures both traits, then medioc-e estimation of the

difficulty parameter for both traits can be expected unless

the corr-elation between difficulty on both traits is high.

J
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In all cases, rtb,b"P) is very high. lhis supportn the

accuracy of Yen's (1984b) equation for predicting how the

unidimensional difficulty parameter is related to the

multidimensional difficulty parameters.

The estimation of. the discrimination values follow some
of the grouping patterns established. Discrimination f or

the unidimensional criterion was estimated better than for
any other configurations. For Group U, a1 is estimated
well. For Group Ml, the estimation of a1 is mostly
mediocre. Group M2 has the poorest overall correlations

for discrimination on Trait 1.

The estimation of discrimination of Trait 2 (a2) does

not seem to follow a useful pattern. Most correlations are
mediocre to poor. In general, the estimation of am for

Group M1 is better than that for Group U. The size of the

correlation between al and am appears to have no effect on

the estimation of either a1 or a*. However, the estimation

of a1 and am.does appear to be dependent on whether or not

the tests are considered to be unidimensional according to

the discrimination "loading" criterion. If the test is con-

sidered to be unidimensional according to this criterion,
then al is well estimated and a= is poorly estimated. If

the test is considered to be multidimensional, then the

estimation of both al:and as is titediocre to poor.

The instability of the discrimination parameter shown

here is comparable to Yen's (1980) findings of unstable
item discrimination estimates found for items from an

achievement test. Yen hypothesizes that a possible cause .

for the instability in the estimations for the real data

could be a carefulness dimension. However, Yen used very

small sample sizes (183-668), which have been shown to

yield unstable parameter estimates.

The results found here for the discrimination estimates

or Group U configurations support the Reckase (1977, 1979)
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conclusion that the three-parameter model computes item

discrimination parameter estimates related to one +actor.

This is the result that woult be ;theoretically predicted

(Christoffersson, 1975). Results for the other

multidimensional configurations are not so clear cut. If

LOGIST were drawn to one dominant factor, one would expect

the discriminations for .one of the two traits to be

estimated better than the other. However, in the M1 and M2

groups, this is not the case. In all conditions, the

discrimination for both traits showed, at most, mediocre

estimation. This supports the Drasgow and Parson's (1983)

conclusion that for some multidimensional data

confiaurations LOGIST is not drawn to a general factor.

Equation 15 predicts that if both traits are equally

influencial, then the discrimination of both traits will be
^

given equal weight in obtaining a. The low correlations

between
^
a and both al and am for Group M2 support the

accuracy of this equation. However, r(2,a4') is very hiah

for all conditions of Group M2. As with the difficutly

parameters, the accuracy of Yen's (1984b) equations for

predicting the relationship between the unidimensional and

the multidimensional item parameters is upheld.

Note also that it is assumed here that a high

correlation implies that the parameters are well estimated.

This might not be true. If the two sets of discriminations

had equal standard deviations but different,.means, th

correlation could be 1.00, even though none of the

corresponding values are equal. However, this would not

change the conclusions drawn from the low correlations

found here. Obviously, if LOGIST were drawn to one group

factor (i.e. computes item discrimination estimates

related to one factor), then the item discrimination

parameters for one of the two traits should have been

better estimated.
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The estimation of the c parameter is poor to mediocre
for all conditions of all configurations. This is

consistent with the Res and Jensen (1983) results of low

correlations between c and estimated c (.031 to .315) for

sample sizes from 250 to 2000. Their data were generated

using the one-dimensional threu-parameter model. No

comparisons could be made fo' c estimated from data

generated with a three-parameter multidimensional model,

since none of the multidimensional research reported data

for c.

In order to adequately estimate the guessing parameter'

a substantial number of low ability examinees are required

(Lord, 1975; Hambleton & Martois, 1983; Ree & Jensen, 1923;

Wingersky, 1983). For very easy items or items that do not

discriminate well, the item response (function will not

become asymptotic at the lower end of the range of

abilities in the sample. If there are no or -Faw examinees
at the lower end of the range of abilities, there is no

information with which to estimate c. Hence, LOGIST

estimates a (the same) fixed c for all such items. There

may have been too few examinees with low test scores for

this data. However, this appears implausible as explained

below.

It would be expected that as the difficulty of the

items increases there would be more examinees with low test

scores. Hence, --c should be better estimated for the harder

tests. This certainly does not appear to be the case here.

Recall that the difference in average difficulty of the

easiest to the hardest tests in each configuration is 2.00.

The difficulty parameter for each item had 1.0 added or

subtracted to obtain Test 1 and Test 2 with a 2.0

difference between average difficulty. Therefore, every

item for the harder test of the each configuration has a

difficulty value that is 2.0 larger than the difficulty
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value for some item on the easter test. Hence, c should be

better estimated for the harder tests. The correlations
between c and estimated c do not increase as the test oets

harder. In fact for some configurations, the opposite
occurs. In general, no consistent pattern occurs at all.

Lord (1975) and others have shown that LOGIST parameter
estimates for the three-parameter model are adequate if N
1000 and 'n > 50. The item parameters used here were

estimated using 4000 simulees (2000 low + 2000 medium).
(All 6000 simulees were not used since the program used to

get the response vector data from tape to LOGIST could not

handle 6000 simulees and 60 items.) Possibly the 30-item

tests were too small for good parameter estimation.

The correlations between true and estimated trait
values also follow the multidimensional/unidimensional
grouping. Group U and the unidimensional criterion have
the highest correlations between estimated ability and

ability on Trait 1. Groups M1 and M2 have correlations
about .1 to .2 lower. Configuration 1 has the lowest.

Notice for Groups M1 and M2, that in general, the

correlation between estimated 0 and 9 increases as the

correlation between 01 and 9 increases.

The difference between Groups M1 and M2 versus Group U

is clear cut when the correlations between estimated 9 and

92 are compared to the correlations between estimated 9 and

91. For Groups M1 and M2, these correlations are nearly

equal; for Group U, the correlations of estimated ability

with ability on Trait 2 are all .28 to .56 less than the

corresponding correlations of estimated ability with

ability on Trait 1. !hese difterences mostly decrease as

the correlation between traits decreases.

Apparently, when both tests are unidimensional

according to the "loaoing" criterion, ability on Trait 1 is

well estimated (as well as the unidimensional criterion is
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estimated), but lrait 2 is very poorly estimated. these

dif+erences decrease (i.e. Trait 2 is estimated better) as
the correlation between traits increases. When one or both
tests are considered to be multidimensional, then the
estimation of both traits is approximately the same. Also,
when one or both tests are considered to be
multidimensional, as the correlations between traits
increases, the correlations between estimated e and true e
increase until they are as good or better than the
correlations for the corresponding configurations of the
unidimensional criterion (except for the easiest test where

the correlation remains less than .60).

For most tests, the correlation decreases as the test
gets harder. The reason for the ocurrence of the
noticeably smaller correlation on the easiest test in each
of the Group M1 configurations appears to be due to
excessive loss of simulees due to zero or perfect scores.
Examination of Table 12 Shows that five configurations (1,
7, 8, 9, 10) have a correlation under .60 for the easiest
test for both traits. A gap of .19 to .34 exists between.
the easiest test and the . next test in all of these
configurations compared to virtually equal correlations for
these two tests for all other configurations. For these
five configurations, the loss of simulees (1150, 1412,
1336, 1442, 1079, respectively) is noticeably larger than
nearly aLl other conditions for all other configurations.
It appears that a loss of over 1000 examinees will
noticeably lower the correlations between estimated thetas
and true thetas on both dimensions.

Examination of the situations in which examinees are
lost due to zero or perfect scores reveals other
interesting results. From Table 12, the Group Ml

configurations show a loss of 11 to 1442 simulees
(..3-24.0%) with an average loss of 7.1%, 9.97., 9.67.1
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and +or Lon-Figurations 1, and 7-1U respectively. Group

M2 (Lonfiguration 5) shows a loss of 7 to 694 simulees
(.1-11.6%) with an average loss of 3.4% +or the six

conditions of Configuration 5. Group U shows a loss of 5

to 687 (.1-11.4%) with an average loss of 2.5%, 67., and

.J.3% for Configurations 2, 4, and 6, respectively. This is
comparable to the unidimensional criterion which shows a

lost of 8 to 569 (.1-9.5%) with an average loss of 3.0%.

Configuration 3 has an average loss of 4.2%. over the

six conditions but breaking it up into Test 1 (4.91.) versus

Test 2 (3.4%) again allows a comparison of Test 1 with the

other unidimensional tests and Test 2 with the other

multidimensional tests. The Group U Test 1 average losses

per test are all under 6.17. while the Group M1 are all over

11.9%. Configuration 3-Test 1 clearly falls in with the

other unidimensional configurations.,as would be expected.

Group U Test 2 average losses are all under 1.1%, while the

Group M1 are all over 2.2%.. Configuration 3 Test 2 falls

in with the multidimensional configurations as would be

expected. Note that Configuration 3 is the only

configuration with a large gap between N* for Test 1 bm -

bi = 0 and Test 2 bm - bi = 0. The multidimensional test

lost 356 more simulees than the unidimensional test.

Configuration 5 is again in a group by itself with Test

1 (6.3%) average loss being greater than all group U

configurations and less than all Group M1 configurations,

and Test 2 falling within the Group U percentages. The

average loss per all six conditions of Configuration 5 is

3.4%, which again falls within the Group U percentages.

Although not as dramatic, Yen's (1984b) results using N =

1000 also show the drop in correlations between estimated

theta and both true thetas, and the increase in examinees

lost due to zero or pertect scores in the easiest test.
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Clearly, in all cases except Configuration 5, the
multidimensional tests lost more simulees to zero or

perfect scores than .the undimensional tests. This could

have serious implications for item and ability parameter
estimation.

How well both traits are estimated, then, appears to
depend on how strong the correlation be :ween true ability
on the two traits is, on whether the two tests are
unidimensional or multidimensional according to the
"loading" criterion, and on how many examinees are lost due
tic, zero or perfect scores. The _better the correlation
between true ability on the two traits, the better the

estimation of both traits. (Of course, LOGIST is meant to
estimate only one trait.) If '.one or both 'tests are
considered to be multidimensional. according to the
"loading" criterion, then both traits are estimated fairly

well; however, if both tests are unidimensional, then one
trait is weil''estimated and one is estimated poorly. If

over 1000 examinees are lost, the traits are poorly
estimated, despite N (approximately 3000) being larger than
the criterion set by previous researchers.: These results
support several studies where the same conclusions were

reached (Christoffersson, 1975; Drasgow 8( Parsons. 1983;

McKinley, 1983; Reckase, 1977, 1979; Yen, 1984d).

Reckase (1977, 1979) found that when there is a

dominant first factor present in multidimensional data,
then the three-parameter model estimates that single
factor. The Group U data sets here clearly have a dominant
first factor. Trait 1 is well estimated and Frait 2 is not
well estimated. This is also true for Configuration 3 Test
1. 'these data set results support the Reckase findings.

Just as clearly, the other configurations have nearly equal

estimation of both traits and these estimates get better

for both traits as the correlation between 92 and Gm
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increases. Ihis does not support the keckase tindings.

However, Reckas;e's (197/, 1979, 1981b) conclusion was that

although unstable Item parameter estimates may result, good

ability estimates can be obtained despite Cle data being

multidimensional. This conclusion is supported here. The

descrepancies found here between the Reckase findings and

those indicated by the data presented in this paper may

very well be due to the different sample sizes (Reckase N =

1000) the different generating models (Reckase used a

linear factor analysis model), and sampling error.

DraSgow and*Parsons (1983) found that when one .trait is

sufficiently -prepotent (dominant), then a unidimensional

model provides a good description of multidimensional data

sets. The results shown here for the Group U

configurations support this conclusion. However, the

conclusions from this data go beyond that, indicating that

even with two-dimensional data, the trait estimates are

good enough to conclude that a unidimensional model can

describe multidimensional (two-dimensional) data well at

least when the correlation between 02 and 9= is above .5.

Yen's (1984b) mathematical predictions support the hyp-

othesis that multidimensional data analyzed by the unidim-

ensional three-parameter model result in a unidimensional

trait that is a combination o$ the underlying traits. If

the test involves traits that influenc7. all or most of the

items the prediction is that the underlying, true traits

have approximately equal influence 'n determining estimated

O. Her simulated results confirm ti.. ,at prediction, as do

the correlations of true and estimated thetas for Group 1x11

and M2 configurations here. If the test involves indepen-

dent traits, one of which influences only a few items, that

trait is ignored in the definition of the unidimensional

three-parameter trait. Group U correlations support this

second prediction as do the Reckase (1979) results.
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Summary and conclusions. It is accepted knowledge

that many existing standardized tests, such as most

achievement tests and many aptitude tests, do not satisfy

the undimensionality assumption of the three-parameter

logistic model (8eJar, 1983; Bock; 1979; Hambleton & Cook,

1977; Hutten, 1980; Kingston & Dorans, 1982; Reckase, 1977,

1979). Therefore, the question to be answered is not

whether the assumption is satisfied but whether a specific
use of the model is robust to violations of the assumption

(Hambleton & Cook, 1977; Hambleton, Swaminathan, Cook,

Eignor, & Gifford, 1978; Reckasa, 1981). Hambleton et al.

(1978) and Yen (1984a, 1984b).presented evidence that the

models are robust to some departures. The results of this

research present more.

Factor analyses were used in order to verify whether

the data were truly multidimensional or not. The factor

analyses supported a division of the simulated

multidimensional data sets into groups according to how the

tests "load" (discriminate) on the two dimensions. The

tests either both "load" heavily on both dimensions (both

tests are multidimensional), one test "loads" heavily. on

one dimension and the other test "loads" heavily on the

same dimension (both tests are unidimensional), one test is

unidimensional and one multidimensional, or one test

"loads" heavily on one dimension and the other test loads

heavily on the other dimension.

Although the strength of the correlation between the

two generating traits seemed to have little effect on the

quality of the parameter estimation, there is evidence that

the unidimensionality or multidimensionality of the tests,

65 determined by both factor analyses and the

discrimination loadings on the two dimensions, does !lave an

effect on item parameter estimation.
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When both tests are unidimensional, both loading most

heavily on the same dimension, then al and b% are well

estimated, and as and bm are poorly estimated. If both

tests to be equated are multidimensional, then b% is

estimated.fairiy well, ba is poorly estimated, and as and

aw are mostly poorly estimated. If both tests are

multidimensional with Test 1 loading heavily on one

dimension and Test 2 loading heavily on the other

dimension, then b% and bm, al and a= are all poorly

estimated. If Test 1 is unidimensional and Test 2 is

multidimensional, then for Test 1 a% and b% are well

estimated and am and b.= are poorly estimated, while tar

Test 2 b% is fairly well estimated, and bm, al, and am are

poorly estimated. The estimation of the c parameter was

mediocre to poor for all conditions of all configurations.

The results of this research indicate that the poorest

item parameter estimates occur for the situation in which

one test is unidimensional and one is multidimensional,

such as a situation in which Trait 2 is measured by only a

few items on one test and by most or all of the items on

the other test. This situation appears to be worse than if

both tests are unidimensional or both are multidimensional.

In conclusion, these results indicate that use of the

three-parameter logistic model is as good, in most

instances, for parameter estimation of multidimensional

data as it is for unidimensional data for the types o+

conditions studied in this research. Caution should be

exercised, however, when one test is unidimensional and one

is multidimensional, such as occurs when a higher level has

a few items measuring a trait that a lower level does not

measure.
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